Functional knockout of the adenosine 5'-phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation.

نویسندگان

  • Anna Koprivova
  • Andreas J Meyer
  • Gabriele Schween
  • Cornelia Herschbach
  • Ralf Reski
  • Stanislav Kopriva
چکیده

The reduction of adenosine 5'-phosphosulfate (APS) to sulfite catalyzed by adenosine 5'-phosphosulfate reductase is considered to be the key step of sulfate assimilation in higher plants. However, analogous to enteric bacteria, an alternative pathway of sulfate reduction via phosphoadenosine 5'-phosphosulfate (PAPS) was proposed. To date, the presence of the corresponding enzyme, PAPS reductase, could be neither confirmed nor excluded in plants. To find possible alternative routes of sulfate assimilation we disrupted the adenosine 5'-phosphosulfate reductase single copy gene in Physcomitrella patens by homologous recombination. This resulted in complete loss of the correct transcript and enzymatic activity. Surprisingly, the knockout plants grew on sulfate as the sole sulfur source, and the concentration of thiols in the knockouts did not differ from the wild type plants. However, when exposed to a sublethal concentration of cadmium, the knockouts were more sensitive than wild type plants. When fed [(35)S]sulfate, the knockouts incorporated (35)S in thiols; the flux through sulfate reduction was approximately 50% lower than in the wild type plants. PAPS reductase activity could not be measured with thioredoxin as reductant, but a cDNA and a gene coding for this enzyme were detected in P. patens. The moss Physcomitrella patens is thus the first plant species wherein PAPS reductase was confirmed on the molecular level and also the first organism wherein both APS- and PAPS-dependent sulfate assimilation co-exist.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The putative moss 3'-phosphoadenosine-5'-phosphosulfate reductase is a novel form of adenosine-5'-phosphosulfate reductase without an iron-sulfur cluster.

Sulfate assimilation provides reduced sulfur for synthesis of the amino acids cysteine and methionine and for a range of other metabolites. Sulfate has to be activated prior to reduction by adenylation to adenosine 5'-phosphosulfate (APS). In plants, algae, and many bacteria, this compound is reduced to sulfite by APS reductase (APR); in fungi and some cyanobacteria and gamma-proteobacteria, a ...

متن کامل

The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation.

It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5'-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5'-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25-30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organi...

متن کامل

Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development.

A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the DeltaSiR1 mutants. Whi...

متن کامل

Plant adenosine 5'-phosphosulfate reductase is a novel iron-sulfur protein.

Adenosine 5'-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5'-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minor and Arabidopsis thaliana were overexpressed in Escherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins in...

متن کامل

Complex signaling network in regulation of adenosine 5'-phosphosulfate reductase by salt stress in Arabidopsis roots.

Sulfur-containing compounds play an important role in plant stress defense; however, only a little is known about the molecular mechanisms of regulation of sulfate assimilation by stress. Using known Arabidopsis (Arabidopsis thaliana) mutants in signaling pathways, we analyzed regulation of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase (APR), by salt stress. APR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 35  شماره 

صفحات  -

تاریخ انتشار 2002